844 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 4, APRIL 2001

Quasi-Static Discrete Green’s Function for
SAW Devices

David P. Morgan Member, IEEE

Abstract—A discrete Green’s function is derived for surface 1v.
acoustic wave device analysis, giving the currents in an infinite
array of regular electrodes when a voltage is applied to one
electrode. Simple formulas are obtained by using the quasi-static p— {
approximation, which assumes the frequency to be such that elec- }
trode reflections are insignificant. The function exhibits distortion | I
associated with the nonuniform charge distribution, and is shown
to be causal.

a —»

Index Terms—Charge distribution, quasi-static approximation,
SAW device analysis.

I. INTRODUCTION

HE discrete Green’s function (DGF) is a concept devel-
oped for analysis of a variety of surface acoustic wave
(SAW) and leaky-SAW devices. It is defined by considering an x=0
infinite array of identical electrodes, with widthand pitchp, ) )
. . . . Fig. 1. Electrode configuration for the DGF.
on the surface of a piezoelectric half-space, as shown in Fig. i

Here, the surface normal is taken as thdirection, and the )
SAW propagation direction is. One electrode, taken to be Cer]_methods, need to be accounted for. These include the presence
: of leaky waves or bulk waves, and the mechanical behavior

tred atz = 0, has unit voltage applied (multiplied by an implicit™, "> ) o

term exp(jwt), which is omitted), while all other eIectrodesOf finite-thickness electrodes—complications that affect, for
have zero voIt,age The current téken by electrads I, («) example, leaky-wave resonators for RF filters. For such cases,
and this is equal to the DGF, denoték} (w). Here,n :"0 for’ the harmonic admittance affords some degree of simplification

Jpecause of the assumed form of the electrode voltages. The
general procedure is to calculate the harmonic admittance first,
by numerical techniques, and then integrate to transform it
I, =Gnw) Vo=1 V,=0, for n#£0. (1) tothe DGF. Care is needed to deal with a poledof(v,w),
which is often present because of unattenuated surface-wave

The electrode currents for any other distribution of electroggopagation. Zhangt al. [1] introduced a component of the
voltages are obtained simply by superposition. Thus, devide&F, proportional texp(—js|n|) for n # 0, to algebraically
such as transducers and resonators are easily analyzed oncatheunt for the pole it (y,w) aty = s; here,s is a constant
DGF is known, provided the electrodes are regular. independent of, though it does depend an Hashimoto and

A related function is the harmonic admittandg(~, w). This Yamaguchi [2], [3] derived an acoustic DGF of similar form, to
is defined by assuming electrode voltages of the fégm=  Which electrostatic terms are added. _
Vo exp(—j2myn), wherey is a constant. Thend,,(v,w) = Ar_lother appllcatlon_ o_f the_ DGF has been to the analysis of
I,,/V,., wherel, are the electrode currents; this ratio can boating electrode unidirectional transducers (FEUDTS) [2],
shown to be independent of It is easily shown thati, (v, w) with regular eIect_rodes. Here, d|re(_:t|V|ty_|s ot_)tame_d by means
is periodic iny with period unity, and it can, therefore, be rep®f an asymmetric electrode configuration including one or
resented by a Fourier series whose coefficients are found torBare floating electrodes in each period. The wave concerned
G, (w). Conversely(@, (w) is a Fourier integral ofd;,((v,w). IS usu_ally_ the famll_lar piezoelectric Rr_;lylelgh wave, and the

These basic relationships were first developed by ZhetngComplications mentioned above are of little concern. Moreover,
al. [1] and further exploited by, for example, Hashimoto an@lectrode reflections are not usually very significant since they
Yamaguchi [2], [3] and Venturat al. [4]. The main motiva- Occur at frequencies well above Fhe FEUDT passband. For
tion for the approach concerns situations in which complékample, a six-electrode FEUDT (six electrodes per period) has

physical phenomena, difficult to analyze even by numerick$ fundamental passband centredfat6, where the sampling
frequencyy; is the frequency at which the wavelength equals

. . , the electrode spacing Electrode reflections occur at the Bragg
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do not need to be considered, except in so far as they catechanical perturbations due to the electrodes are ignored.
some velocity perturbation. This implies that a simple Green&ssuming that the main acoustic activity is a piezoelectric
function analysis using the quasi-static approximation Rayleigh wave, Milsoret al. [8] showed that we can write
adequate [5], though the development in [5] does not allo@(z,w) = G.(z) + Gs(z,w), whereG.(z) is an electrostatic
for the presence of floating electrodes. To allow for this, ®rm and,(x,w) is aterm due to the SAWSs. A bulk-wave term
guasi-static FEUDT analysis was derived in [6], where it wds omitted on the assumption that its effects can be ignored.
used to evaluate the center-frequency coupled-mode (COM)e two Green'’s functions ar@.(z) = —ln |z|/(we) and
parameters. Gs(z,w) = jI'sexp(—jk|z|), wheree is the surface permit-

In this paper, a simplified DGF is derived from the quasiivity, e = (e0+¢)) & e5(), andk = w /vy is the free-surface
static approximation. The results here show some distortion®AW wavenumbery, being the free-surface velocity:, is
the DGF for electrodes with smalh|. This is expected be- defined ad’; = (Av/v)/e, whereAwv /v = (vg — v,,) /vo and
cause the static charge density, which acts as a distributed SAWis the SAW velocity for a metallized surface.
source, is spread out over several electrodes on either side ofhe charge density is written a$z, w) = o.(z) + o, (x, w),
electrode 0 so that the SAW amplitude will vary in this regionwhere the real function.(x) is an electrostatic term obtained

The DGF can be applied to FEUDT analysis by writing equédsy solving (3) with the SAW Green'’s functiot¥;(z,w) ig-
tions for the electrode currents in terms of voltages, as explaingated, i.e., taking7(z,w) = G.(z). The second term, i.e.,
by Hashimoto and Yamaguchi [2]. Using (1) with superpositiom,, (x, w), arises from the acoustic waves present. Substituting
and taking the electrode voltages to Hg, the electrode cur- for G(x,w) ands(z,w) in (3) gives four terms on the right-hand

rents are side, but a ternt?;(z, w) * o, (x,w) is relatively small because
M both quantities are proportional tov/v. In the quasi-static ap-
I, = Z VoG @) proximation, this term is omitted so that the surface potential
— becomes

Afinite sum is written here, assuming that electrodes with index(z, w) = [Gc(z) + Gy(z,w)]| * oc(z) + Ge(z) * 04 (7, w).
outside the rangél, M) have zero voltage. If the voltages are ()
known, the currents are given directly by (2), and summation of

the currents for e|ectr0deS Connected to one bus bal’ giVeS m Surface waves generated by atransducer arise froﬁ]qt,he
transducer current and, hence, its admittance. For the FEURQTerm because the other terms involve the electrostatic Green’s
the unknown voltages of the floating electrodes can be obtaingfction and, therefore, give localized potentials. For a location

from (2) and the condition that their currents are zero, leadingoutside the transducer, this potential, which can be regarded
to simultaneous equations, which determine the voltages. Mogg-the SAW amplitude, is given by

over, the amplitudes of the SAWs generated are, in the quasi-

static approximation, easily deduced from the electrode volt- ¢, (z,w) =Gz, w) * oo ()

ages, thus giving the transduction strength and directivity of the 00

transducer. Equation (2) can also be applied to a two-transducer =jLs / exp [+jk(z —a')]oc(a) da’
device to obtain the admittance matiiy; [2]. With a voltage
applied to transducer 1, say, with transducer 2 shorted, the cur-
rent taken by transducer 1 giv&%; and the current taken by
transducer 2 givess; .

ade o)

=jIso.(2k) exp(Ljka) (5)

wherez.(k) is the Fourier transform ob.(x). The upper

; . lower) sign applies when is to the left-hand side (right-hand

¢ When appllgdt_to FEfUtE TtanaI):jS|s:[fche D(ZF czn i“OW for tn ide) of the transducer. This shows that for each location

requency dvana |o|n 0 I N ;an?_ l.JtC IIO n at?1 r; E‘;C lon I_rlr('ecthﬁie transducer, the electrostatic charge density can be regarded

ggnl\}ls anl can a360 a_ll_r?w or fini (ta'- engf € .elf St untike tes a source generating SAWSs that travel out of the transducer
analysis in [6]. The assumption of an infinite array o ith velocity v, unaffected by the electrodes that they pass

electrodes is not, in practice, very restrictive because eIectro@I%%er. Thus, the stop bands and the velocity perturbation due to

remote fr_om t_he active part of a transduc$r havei litle effect{ e electrodes are not predicted, but these limitations are often
the quasi-static case. A small number of “guard” electrodes ceptable, as explained earlier

each end is sufficient to represent the infinite array to adequateFOr the case where unit voltage is applied to one electrode in
accuracy. an infinite periodic array, as in Fig. 1, the electrostatic charge

densityo.(z) is the elemental charge density denopgdzx),
and the Fourier transform of this has the algebraic form

The Green'’s function method proposed in [5] and [7] starts

Il. QUASI-STATIC APPROXIMATION

from the relation B (k) = %Pm(cos A),
Pz, w) = Glz,w) * oz, w) 3) form < kp/(2r) <m+1 (6)

where ¢(x,w) is the surface potentia(x, w) is the charge whereA = wa/p, s = kp/(2n)—m (thus0 < s < 1), P,.(2)
density on the electrodes, ar®é(x,w) is the Green’s func- is a Legendre polynomial, anfl_,(x) is a Legendre function.
tion. The asterisk indicates convolution with respectazto This function serves as an element factor, governing the SAW
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generation when a voltage is applied to one electrode; it was fitstnative form forp,, can be derived by using the step function,
derived by Peach [9]. giving the result of [5, eq. (4.47)]. For the present case

We can use this function to deduce the DGF for lasg€&or
the situation in Fig. 1, the SAW generated is given by (5) with,, (z, w) =

Lo ke .
‘ ) S0 [Py (k) + JF (=k)/7]
o (k) replaced byp (k) so the wave generated in ther-di-

rection is¢,(z,w) = jT,p;(—k)exp(—jkz). This formula +%j1“sejk’” [p;(k) — jF(k)/x] (12)
gives the wave amplitude outside the “transducer,” but here, the

“transducer” is actually of infinite length. However, the formulavhere the functiorf(k) is defined by the convolution

is valid for large finitex because;(x) is a well-localized func-

tion—after a few electrodes the valuesgf(x) become small F(B) =ps(3)  [exp(—jBx)/B]. (13)

and have little effect on the SAW amplitude. The current en-

tering electrode: is found from the analysis of a receiving transMaking use ofp(—k) = p,(k), the currentl,,, obtained by
ducer. Taking all the electrodes to be shorted and assumingugstituting (12) into (10) is found to have a real pgrtk)
SAW with potentialg;; exp(—jkz) to be incident, the current derived from thep(+k) terms, and an imaginary pajt, ()

in electroden is I,, = —jwei15,(k), taken from [5, eq. (4.68)].
Here, the phase @f;; has been referenced to the center of elec-
troden, which is located at,, = np. Unit aperture is assumed.

Identifying ¢;1 with ¢,(z,,,w), the current is found to be

forn > 1
(7)

I = Go(w) =Wl [5,(k)]” exp(—jkzn),

where we have also used the symmetyy—k) = p4(k).

lll. DGF

To derive the DGF for alln, a more detailed analysis is

derived from theF'(+k) terms. Thus, we find

Ion = gn(k) +an(k) (14)
with
9n(k) = T, [5;(k)]” cos(ka,) (15)
and
Cowr, = k=)
bo(k) = — - /_ f cos [(k — ’y)a:n] dry

(16)

needed. Firstly, we note that the electrode current must hd the DGF is7, (w) = lan(k) + jwQn.
electrostatic and acoustic contributions, corresponding to theFig- 2 showsl,,, for a frequencyf = f./6 = vo/(6p), ap-
two charge densities in (4). The electrostatic charge densiippriate for the center frequency of a six-electrode FEUDT.

is ps(x), and the integral of this over electrodeis the net
electrode charge, denotégl,. The resulting current igw@,,.
Assuming unit aperture, the total electrode current is

In = Ian +Jan (8)
wherel,,, is the acoustic contribution. The charggsare given
by [5, eq. (C.27)] and, in the particular casengp = 1/2, they
are given by the simple formula

4e
= ——————. 9
@n 7r(1 — 4m2) ©)
The acoustic current is obtained from the relation
Iy = —jw / P — xp)po(x,w) du (10)

which is taken from [5, eq. (4.43)]. Herey, (z,w) is the
“acoustic potential,” which is defined by
¢alz,w) = Go(x,w) * pp(x) (12)

i.e., the acoustic part of the potential in (4), with(x) replaced
by its present versiop;(x). In view of the form of G, (x,w),

The amplitude and phase are defined@gsk) + jb, (k)| and
tan~! [b, (k)/g.(k)], respectively. For clarity, a termknp has
been subtracted from the phase since (6) shows that this is the
phase expected for large The amplitude has been normal-
ized towI',. The acoustic Green'’s function is seen to have con-
stant amplitude and linear phase, except for a few electrodes
in the vicinity of electrode 0 where there is notable distortion.
The Green’s function is, of course, symmetric: thids,, («w) =
Gp(w).

Noting thatk = w/vg, (15) and (16) show that,(k) is es-
sentially the Hilbert transform af,, (%), this transform being the
convolution with—1/(ww) so that the transform of a function
Alw) is

17

It is well known that a function whose imaginary and real parts
are related by this transform will be causal. Here, it can be seen
that the functiord,,(k)/w is the Hilbert transform of,, (k) /w.
However, multiplication byw is of little consequence because
the phase® = tan~' [b,(k)/g.(k)] is not affected, and this
phase determines the group delay of the current at frequency
w. Hence, the acoustic currept + jb,, is a causal function,

as expected because the current in electrodannot anticipate

¢a(z,w) is essentially the Fourier transform of the electrostatibe voltage applied to electrode 0.

charges on one side of the pointplus the inverse transform of

For largen, the cosine in (16) varies rapidly and the other

the charges on the other side; this corresponds to the amplitugdesnd k-dependent terms can be treated as constants in com-
of the two waves traveling toward the observation point. An gparison. The integral then becomes the Hilbert transform of
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Fig. 2. Acoustic part of the DGF for frequengy = £,/6. (a) Amplitude
divided bywT,. (b) Phase relative te-kx,, .

cos(kx,,), which is simply— sin(kz,) whenz, > 0. This
givesb,, (k) = —wI',[p(k)]? sin(kx,,) and, hence,
forn > 1.

Ion = Wl [ﬁf(k)]Q exp(—jkx,,), (18)

Bearing in mind that the electrostatic term is small for lange

this is in agreement with (6).

As a further confirmation, the power flowing into electrod
0 is go/2, and this should be accounted for by the SA

powers generated. The power of each of the two SAWY4s
wl|¢s|?/T',, and for largdz|, the amplitude ig¢, | = I, [p (k)|

This givesgy = wfs[ﬁf(k)]Q, which is in agreement with (15).

It is perhaps worth noting thaf,,| = Re[lp] = go(k) for
n > 1.

IV. CONCLUSIONS

847

therefore, ignores reflections and velocity perturbations caused
by the electrodes, but these limitations are acceptable for fre-
quencies remote from the stopbands, as in the case of FEUDT
analysis. The use of the quasi-static approximation gives suffi-
cient simplification for the DGF to be deduced algebraically.
The result shows distortion associated with the form of the
charge distribution due to the voltage on one electrode, and
several expected features are confirmed, including causality.
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