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Quasi-Static Discrete Green’s Function for
SAW Devices

David P. Morgan, Member, IEEE

Abstract—A discrete Green’s function is derived for surface
acoustic wave device analysis, giving the currents in an infinite
array of regular electrodes when a voltage is applied to one
electrode. Simple formulas are obtained by using the quasi-static
approximation, which assumes the frequency to be such that elec-
trode reflections are insignificant. The function exhibits distortion
associated with the nonuniform charge distribution, and is shown
to be causal.

Index Terms—Charge distribution, quasi-static approximation,
SAW device analysis.

I. INTRODUCTION

T HE discrete Green’s function (DGF) is a concept devel-
oped for analysis of a variety of surface acoustic wave

(SAW) and leaky-SAW devices. It is defined by considering an
infinite array of identical electrodes, with widthand pitch ,
on the surface of a piezoelectric half-space, as shown in Fig. 1.
Here, the surface normal is taken as the-direction, and the
SAW propagation direction is. One electrode, taken to be cen-
tred at , has unit voltage applied (multiplied by an implicit
term , which is omitted), while all other electrodes
have zero voltage. The current taken by electrodeis ,
and this is equal to the DGF, denoted . Here, for
the electrode centred at . Thus, the electrode currents and
voltages are

for (1)

The electrode currents for any other distribution of electrode
voltages are obtained simply by superposition. Thus, devices
such as transducers and resonators are easily analyzed once the
DGF is known, provided the electrodes are regular.

A related function is the harmonic admittance . This
is defined by assuming electrode voltages of the form

, where is a constant. Then,
, where are the electrode currents; this ratio can be

shown to be independent of. It is easily shown that
is periodic in with period unity, and it can, therefore, be rep-
resented by a Fourier series whose coefficients are found to be

. Conversely, is a Fourier integral of .
These basic relationships were first developed by Zhanget

al. [1] and further exploited by, for example, Hashimoto and
Yamaguchi [2], [3] and Venturaet al. [4]. The main motiva-
tion for the approach concerns situations in which complex
physical phenomena, difficult to analyze even by numerical
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Fig. 1. Electrode configuration for the DGF.

methods, need to be accounted for. These include the presence
of leaky waves or bulk waves, and the mechanical behavior
of finite-thickness electrodes—complications that affect, for
example, leaky-wave resonators for RF filters. For such cases,
the harmonic admittance affords some degree of simplification
because of the assumed form of the electrode voltages. The
general procedure is to calculate the harmonic admittance first,
by numerical techniques, and then integrate to transform it
to the DGF. Care is needed to deal with a pole of ,
which is often present because of unattenuated surface-wave
propagation. Zhanget al. [1] introduced a component of the
DGF, proportional to for , to algebraically
account for the pole in at ; here, is a constant
independent of , though it does depend on. Hashimoto and
Yamaguchi [2], [3] derived an acoustic DGF of similar form, to
which electrostatic terms are added.

Another application of the DGF has been to the analysis of
floating electrode unidirectional transducers (FEUDTs) [2],
with regular electrodes. Here, directivity is obtained by means
of an asymmetric electrode configuration including one or
more floating electrodes in each period. The wave concerned
is usually the familiar piezoelectric Rayleigh wave, and the
complications mentioned above are of little concern. Moreover,
electrode reflections are not usually very significant since they
occur at frequencies well above the FEUDT passband. For
example, a six-electrode FEUDT (six electrodes per period) has
its fundamental passband centred at , where the sampling
frequency is the frequency at which the wavelength equals
the electrode spacing. Electrode reflections occur at the Bragg
frequency and its multiples. In these circumstances, the
mechanical and electrical loading produced by the electrodes
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do not need to be considered, except in so far as they cause
some velocity perturbation. This implies that a simple Green’s
function analysis using the quasi-static approximation is
adequate [5], though the development in [5] does not allow
for the presence of floating electrodes. To allow for this, a
quasi-static FEUDT analysis was derived in [6], where it was
used to evaluate the center-frequency coupled-mode (COM)
parameters.

In this paper, a simplified DGF is derived from the quasi-
static approximation. The results here show some distortion of
the DGF for electrodes with small . This is expected be-
cause the static charge density, which acts as a distributed SAW
source, is spread out over several electrodes on either side of
electrode 0 so that the SAW amplitude will vary in this region.

The DGF can be applied to FEUDT analysis by writing equa-
tions for the electrode currents in terms of voltages, as explained
by Hashimoto and Yamaguchi [2]. Using (1) with superposition,
and taking the electrode voltages to be, the electrode cur-
rents are

(2)

A finite sum is written here, assuming that electrodes with index
outside the range have zero voltage. If the voltages are
known, the currents are given directly by (2), and summation of
the currents for electrodes connected to one bus bar gives the
transducer current and, hence, its admittance. For the FEUDT,
the unknown voltages of the floating electrodes can be obtained
from (2) and the condition that their currents are zero, leading
to simultaneous equations, which determine the voltages. More-
over, the amplitudes of the SAWs generated are, in the quasi-
static approximation, easily deduced from the electrode volt-
ages, thus giving the transduction strength and directivity of the
transducer. Equation (2) can also be applied to a two-transducer
device to obtain the admittance matrix [2]. With a voltage
applied to transducer 1, say, with transducer 2 shorted, the cur-
rent taken by transducer 1 gives and the current taken by
transducer 2 gives .

When applied to FEUDT analysis, the DGF can allow for the
frequency variation of the transduction and reflection mecha-
nisms, and can also allow for finite-length effects, unlike the
COM analysis in [6]. The assumption of an infinite array of
electrodes is not, in practice, very restrictive because electrodes
remote from the active part of a transducer have little effect in
the quasi-static case. A small number of “guard” electrodes at
each end is sufficient to represent the infinite array to adequate
accuracy.

II. QUASI-STATIC APPROXIMATION

The Green’s function method proposed in [5] and [7] starts
from the relation

(3)

where is the surface potential, is the charge
density on the electrodes, and is the Green’s func-
tion. The asterisk indicates convolution with respect to.

Mechanical perturbations due to the electrodes are ignored.
Assuming that the main acoustic activity is a piezoelectric
Rayleigh wave, Milsonet al. [8] showed that we can write

, where is an electrostatic
term and is a term due to the SAWs. A bulk-wave term
is omitted on the assumption that its effects can be ignored.
The two Green’s functions are and

, where is the surface permit-
tivity, , and is the free-surface
SAW wavenumber, being the free-surface velocity. is
defined as , where and

is the SAW velocity for a metallized surface.
The charge density is written as ,

where the real function is an electrostatic term obtained
by solving (3) with the SAW Green’s function ig-
nored, i.e., taking . The second term, i.e.,

, arises from the acoustic waves present. Substituting
for and in (3) gives four terms on the right-hand
side, but a term is relatively small because
both quantities are proportional to . In the quasi-static ap-
proximation, this term is omitted so that the surface potential
becomes

(4)

The surface waves generated by a transducer arise from the
term because the other terms involve the electrostatic Green’s

function and, therefore, give localized potentials. For a location
outside the transducer, this potential, which can be regarded

as the SAW amplitude, is given by

(5)

where is the Fourier transform of . The upper
(lower) sign applies when is to the left-hand side (right-hand
side) of the transducer. This shows that for each locationin
the transducer, the electrostatic charge density can be regarded
as a source generating SAWs that travel out of the transducer
with velocity , unaffected by the electrodes that they pass
under. Thus, the stop bands and the velocity perturbation due to
the electrodes are not predicted, but these limitations are often
acceptable, as explained earlier.

For the case where unit voltage is applied to one electrode in
an infinite periodic array, as in Fig. 1, the electrostatic charge
density is the elemental charge density denoted ,
and the Fourier transform of this has the algebraic form

for (6)

where , (thus, ),
is a Legendre polynomial, and is a Legendre function.
This function serves as an element factor, governing the SAW
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generation when a voltage is applied to one electrode; it was first
derived by Peach [9].

We can use this function to deduce the DGF for large. For
the situation in Fig. 1, the SAW generated is given by (5) with

replaced by so the wave generated in the -di-
rection is . This formula
gives the wave amplitude outside the “transducer,” but here, the
“transducer” is actually of infinite length. However, the formula
is valid for large finite because is a well-localized func-
tion—after a few electrodes the values of become small
and have little effect on the SAW amplitude. The current en-
tering electrode is found from the analysis of a receiving trans-
ducer. Taking all the electrodes to be shorted and assuming a
SAW with potential to be incident, the current
in electrode is , taken from [5, eq. (4.68)].
Here, the phase of has been referenced to the center of elec-
trode , which is located at . Unit aperture is assumed.
Identifying with , the current is found to be

for

(7)

where we have also used the symmetry .

III. DGF

To derive the DGF for all , a more detailed analysis is
needed. Firstly, we note that the electrode current must have
electrostatic and acoustic contributions, corresponding to the
two charge densities in (4). The electrostatic charge density
is , and the integral of this over electrodeis the net
electrode charge, denoted . The resulting current is .
Assuming unit aperture, the total electrode current is

(8)

where is the acoustic contribution. The chargesare given
by [5, eq. (C.27)] and, in the particular case of , they
are given by the simple formula

(9)

The acoustic current is obtained from the relation

(10)

which is taken from [5, eq. (4.43)]. Here, is the
“acoustic potential,” which is defined by

(11)

i.e., the acoustic part of the potential in (4), with replaced
by its present version . In view of the form of ,

is essentially the Fourier transform of the electrostatic
charges on one side of the point, plus the inverse transform of
the charges on the other side; this corresponds to the amplitudes
of the two waves traveling toward the observation point. An al-

ternative form for can be derived by using the step function,
giving the result of [5, eq. (4.47)]. For the present case

(12)

where the function is defined by the convolution

(13)

Making use of , the current obtained by
substituting (12) into (10) is found to have a real part
derived from the terms, and an imaginary part
derived from the terms. Thus, we find

(14)

with

(15)

and

(16)

and the DGF is .
Fig. 2 shows for a frequency , ap-

propriate for the center frequency of a six-electrode FEUDT.
The amplitude and phase are defined as and

, respectively. For clarity, a term has
been subtracted from the phase since (6) shows that this is the
phase expected for large. The amplitude has been normal-
ized to . The acoustic Green’s function is seen to have con-
stant amplitude and linear phase, except for a few electrodes
in the vicinity of electrode 0 where there is notable distortion.
The Green’s function is, of course, symmetric: thus,

.
Noting that , (15) and (16) show that is es-

sentially the Hilbert transform of , this transform being the
convolution with so that the transform of a function

is

(17)

It is well known that a function whose imaginary and real parts
are related by this transform will be causal. Here, it can be seen
that the function is the Hilbert transform of .
However, multiplication by is of little consequence because
the phase is not affected, and this
phase determines the group delay of the current at frequency

. Hence, the acoustic current is a causal function,
as expected because the current in electrodecannot anticipate
the voltage applied to electrode 0.

For large , the cosine in (16) varies rapidly and the other
- and -dependent terms can be treated as constants in com-

parison. The integral then becomes the Hilbert transform of
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(a)

(b)

Fig. 2. Acoustic part of the DGF for frequencyf = f =6. (a) Amplitude
divided by!� . (b) Phase relative to�kx .

, which is simply when . This
gives and, hence,

for (18)

Bearing in mind that the electrostatic term is small for large,
this is in agreement with (6).

As a further confirmation, the power flowing into electrode
0 is , and this should be accounted for by the SAW
powers generated. The power of each of the two SAWs is

, and for large , the amplitude is .
This gives , which is in agreement with (15).
It is perhaps worth noting that for

.

IV. CONCLUSIONS

A DGF for SAW propagation has been derived, giving the
electrode currents when one electrode in an infinite array has
a voltage applied with all the other electrodes grounded. The
derivation makes use of the quasi-static approximation and,

therefore, ignores reflections and velocity perturbations caused
by the electrodes, but these limitations are acceptable for fre-
quencies remote from the stopbands, as in the case of FEUDT
analysis. The use of the quasi-static approximation gives suffi-
cient simplification for the DGF to be deduced algebraically.
The result shows distortion associated with the form of the
charge distribution due to the voltage on one electrode, and
several expected features are confirmed, including causality.
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